Neuropeptides can be released from activated peripheral nerve terminals into the surrounding tissue and evoke an inflammatory response. Neurorigenic inflammation is the term used to describe this phenomenon. Substance P (SP) and calcitonin gene-related peptide (CGRP) are examples of neuropeptides that can induce an inflammatory response by the activation of proinflammatory cytokines and arachidonic acid catabolism when injected into tissue.1-3 These neuropeptides are usually associated with the central and peripheral terminals of C-fiber neurons. Axonal transport to peripheral terminals has been shown to be increased in neurons supplying inflamed tissues.4 Nerve terminals containing SP and CGRP have been demonstrated in the temporomandibular joints (TMJs) of various animals.5-7 Nerve fibers containing SP and CGRP have been shown to be distributed primarily in the joint capsule, the peripheral articular disk, synovial membrane, and the periosteum of rat TMJ.5

In the human TMJ, evaluation of the presence of neuropeptides in the synovial fluid of the TMJ has been performed.8-10 Neuropeptide-containing nerves have been demonstrated by immunostaining within the human TMJ capsule.11 Measurable concentrations of SP within the posterior bilaminar tissue have been evaluated in patients with degenerative TMJ disease.12 No significant differences in SP concentrations between patients were identified.

A spatial association between mast cells and peptidergic nerves containing neuropeptides has been demonstrated in the gastrointestinal tract, suggesting a functional relationship.13 Neuropeptides are known to affect an array of immune functions such as natural killer cell activity and Ig synthesis.14 SP also appears to enhance the endocytotic ability of macrophages and neutrophils.15

Mast cells and SP-containing nerves are prominent perivascularly in the superficial rat synovium.16 A parallel distribution of mast cells and neuropeptide-containing nerves was demonstrated in all sections of the normal synovium. In the human TMJ, the subintimal tissue of the synovial membrane contains fibroblasts, macrophages, and mast cells, in addition to blood vessels and lymphatics.17 Degranulation of mast cells can be stimulated by microorganisms and the neuropeptides neurotensin, somatostatin, vasoactive intestinal peptide, and SP.18,19 However, only SP evokes histamine release from mast cells. Mast cells can also release serotonin (5-HT) on degranulation. Serotonin can also be released from mast cells in response to interactions with neuropeptide Y. Serotonin can produce hyperalgesia by direct action on the 5-HT1A receptors of the primary afferent sensory neurons.20 Mast cells are also a primary cellular source of neurotrophins (ie, nerve growth factor).21 Nerve growth factor has been shown to induce pressure alldynia, as well as lowered heat-pain threshold, in humans.22

This study investigates whether the presence of neuropeptide-containing nerves, as well as mast cells, can be identified within the posterior bilaminar tissue of the human TMJ in patients with internal derangement.
PATIENTS AND METHODS

Posterior bilaminar tissue of the TMJ, which is usually removed and discarded during surgery for articular disk repositioning and posterior ligament repair, was obtained from 9 female patients. Tissue samples were immediately snap-frozen in liquid nitrogen, embedded in OCT medium (Sakura Finetek, Torrance Calif), and stored at –70°C until processing. Our project followed the guidelines of the Institutional Review Board of Baylor Medical Center and received approval. For all patients, this was the first surgical intervention to correct internal derangement of the TMJ. The average age of the patients was 38 years (32-46 years). Four patients (44%) had unilateral TMJ dysfunction, and 5 patients (56%) had bilateral dysfunction. All patients studied were diagnosed with articular disk dislocation and most had varying degrees of degenerative joint disease of the TMJ. Eight patients were previously diagnosed as having the presence of Chlamydia trachomatis within the posterior bilaminar tissue by polymerase chain reaction assay.23

Fig 1. Positive control staining of neuroendocrine carcinoma sections for SP was appropriate (brown material; original magnification ×600).

Fig 2. Positive control staining of mastocytoma sections for mast cells was appropriate (original magnification ×600).
Immunohistochemical analyses

Five-millimeter sections were prepared from OCT tissue blocks, then mounted on capillary gap slides (ChemMate; Ventana Medical Systems, Tucson, Ariz). Specimens were then incubated in blocking antibody serum (ChemMate; Ventana Medical Systems) for 5 minutes. A primary monoclonal antibody (Ab) designed for specific and qualitative localization of SP (BioGenex Laboratories, San Ramon, Calif) was used. Before use, Ab was diluted 1:80 with 1% PBS (pH 7.4) and then was incubated with the specimens at 37°C for 30 minutes. Negative controls were incubated without primary Ab. Specimens were rinsed in buffer. Secondary staining with biotinylated polyvalent Ab (rabbit, mouse IgM, mouse IgG) was done by incubation at 37°C for 20 minutes, followed by two PBS rinses, then a 20-minute 37°C incubation with avidin-biotin complex (ChemMate; Ventana Medical Systems). Specimens were rinsed in PBS, incubated in a DAB chromogenic bath (ChemMate; Ventana Medical Systems) for 5 minutes, then counterstained in hematoxylin for 1 minute. Automated processing of

Fig 3. Stained tissue sections from patient TMJ sample indicating presence of SP-containing nerves within walls of vasculature (brown granular material; original magnification ×600).

Fig 4. Mast cells within posterior bilaminar tissue of TMJ associated with the vasculature (original magnification ×600).
staining procedures was done on a Bio-Tek 1000 (Ventana Medical Systems). Staining of neuroendocrine carcinoma sections was used to provide positive control staining of nerves containing SP (Fig 1). No control nondysfunctional TMJ tissue was available for SP evaluation. To stain for mast cells, TMJ tissue sections were placed into 0.1% toluidine blue (pH 0.5) for 10 minutes, quickly dehydrated, and mounted. Sections from a mastocytoma were used for positive mast cell control staining (Fig 2).

RESULTS

All tissue specimens were examined for the presence of neuropeptide-containing nerves by immunohistochemical staining. All TMJ specimens examined were positive for the presence of SP-containing nerves (Fig 3). All positive patients were female, and their average age was 38 years (range, 32-46 years). Positive control staining of neuroendocrine carcinoma sections was appropriate (Fig 1). Histologic analysis of the stained tissue sections from positive patient samples indicated a predominance of signal for the SP-containing nerves within the walls of the vasculature (Fig 3). Negative experimental TMJ tissue specimens, processed without primary anti-SP Ab, showed an appropriate lack of positive signal. The presence of mast cells associated with the vasculature was demonstrated (Fig 4).

DISCUSSION

Our study demonstrates the presence of SP and mast cells associated with the vasculature within the posterior bilaminar tissue of the human TMJ in patients with anterior disk dislocation. The presence of mast cells and peptidergic nerves containing neuropeptides within the TMJ suggests that a functional relationship may exist that is similar to that believed to exist in the gastrointestinal tract. It is postulated that the bidirectional communication between mast cells and nerves may serve as a homeostatic unit in the regulation of gut physiology and host defense to elicit antigen eradication or inactivation.

The presence of SP immunoreactive fibers has been demonstrated in the capsule, disk attachments, and within the adventitia of arteries—but not of veins—of the TMJ of Macaca fascicularis. Calcitonin gene-related peptide, neuropeptide Y, and vasoactive intestinal polypeptide–containing nerves show a similar distribution in the rat TMJ. Neuropeptides neurokinin A, CGRP, neuropeptide Y, and vasoactive intestinal polypeptide have been demonstrated in the synovial fluid of the TMJ in patients with arthropathy. Mast cells and SP-containing nerves are prominent perivascularly in the superficial rat synovium, where they may have early contact with any microorganism arriving via the microvessels. Our previous studies have shown the presence of C trachomatis and other bacteria associated with reactive arthritis in the perivascular tissue of the posterior bilaminar tissue in approximately two-thirds of the TMJs evaluated.

The localization of C trachomatis and other bacteria to the TMJ may occur as a consequence of the perivascular location of mast cells that can bind infectious agents. Neuropeptides SP and substance K have been shown to induce the production of interleukin-1 (IL-1), interleukin-6 (IL-6), and tumor necrosis factor (TNF)-α from human monocytes. The concentration of IL-1, IL-6, and TNF has been shown to be higher in the TMJs of patients with internal derangement than in control subjects. Local production of TNF within the TMJ has been shown in patients with chronic connective tissue disease.

Mast cell–neuropeptide nerve interaction in the regulation of the mucosal/epithelial response to antigen has been shown in the intestines. Mast cells can release histamine, leukotrienes, and prostaglandins in response to antigen challenge. Previously, Quinn and Bazan detected the presence of prostaglandin E2 and leukotriene B4 in the synovial fluid of painful, dysfunctional TMJs. More recently, Alstergren and Kopp have shown an increased level of prostaglandin E2 in the synovial fluid of patients with inflammatory disorders of the TMJ versus plasma levels, thus indicating the intra-articular production of prostaglandin E2.

The subintimal tissue of the TMJ synovial membrane has been shown to contain fibroblasts, macrophages, and mast cells, as well as blood vessels and lymphatics. Mast cells can also synthesize a variety of cytokines that can direct mucosal immune reactions, including transforming growth factor-β. It has been postulated that the sustained production of transforming growth factor-β may account for the observation of intimal hyperplasia, an increase in the number of fibroblasts in the subintimal tissue, and fibrosis seen in the synovial membrane of osteoarthritic TMJs.

Our previous study showed an area of synovial hyperplasia with a collection of C trachomatis–infected cells in the subsynovial layer. Reactive arthritis as a consequence of triggering C trachomatis infections has been extensively studied to understand the pathogenetic mechanisms of inflammatory arthritis. Although speculative, the presence of mast cells within the synovial and the perivascular tissues of the TMJ and neuropeptide-containing nerves suggests a potent mechanism for nervous system regulation of host defense responses to bacterial infections. The etiology of inflammation within the TMJ may occur in response to the presence of microorganisms within the tissues of the TMJ and may be augmented.
by various pathways, including the nervous system, thus resulting in degenerative changes in the collagen of the posterior ligament, internal derangement, and degenerative joint disease.

We thank Vincent A. Memoli, MD, Professor of Pathology, Christine Hodorowski, and Karlya Wheeler for their technical assistance in the Pathology Laboratory, Dartmouth-Hitchcock Medical Center, Lebanon, NH.

REFERENCES


Reprint requests:
Charles H. Henry, DDS
650 Court St
Keene, NH 03431
chenry@pol.net